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Abstract. Within the conventional QCD sum rules, we calculate the πNN coupling constant, gπN , beyond
the chiral limit using two-point correlation function with a pion. For this purpose, we consider the Dirac
structure, iγ5, at m2

π order in the expansion of the correlator in terms of the pion momentum. For a
consistent treatment of the sum rule, we include the linear terms in quark mass as they constitute the
same chiral order as m2

π. In this sum rule, we obtain gπN = 13.3± 1.2, which is very close to the empirical
πNN coupling. This demonstrates that going beyond the chiral limit is crucial in determining the coupling.

PACS. 13.75.Gx Pion-baryon interactions – 12.38.Lg Other nonperturbative calculations – 11.55.Hx Sum
rules

QCD sum rule [1] is a framework which connects hadronic
parameters with QCD parameters. In this framework, a
correlation function is introduced in terms of interpolat-
ing fields constructed from quark and gluon fields. The
interpolating field is constructed so that its coupling to
the hadron of concern is expected to be strong while
its couplings to other higher resonances are hoped to be
small. Then the correlator is calculated by Wilson’s op-
erator product expansion (OPE) in the deep Euclidean
region (q2 = −∞) and matched with the phenomenologi-
cal “ansatz” to extract the hadron’s information in terms
of QCD parameters.

One interesting quantity to be determined is the pion-
nucleon coupling constant, gπN . As the coupling is empir-
ically well-known, a successful reproduction of this quan-
tity may provide a solid ground to determine other meson-
baryon couplings as well as a better understanding of non-
perturbative nature of hadrons. For this direction, the
two-point correlation function for the nucleon interpolat-
ing field JN ,

Π(q, p) = i

∫
d4xeiq·x〈0|T [JN (x)J̄N (0)]|π(p)〉 , (1)

may be useful and it is often used in calculating gπN [2–5].
Alternative approach is to consider the correlation func-
tion without pion but in an external axial field [6]. This
provides the nucleon axial charge, gA, which can be con-
verted to gπN with the help of the Goldberger-Treiman
relation. Our interest in this work is to provide a rea-
sonable value of gπN using (1) because its extension to
other meson-baryon couplings seems to be more straight-
forward.
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The correlation function, (1), contains various inde-
pendent Dirac structures, each of which can be in princi-
ple used to calculate gπN . In the recent calculations [4,5],
we have proposed to use the γ5σµν structure in studying
gπN as this structure is independent of the pseudoscalar
(PS) and pseudovector (PV) coupling schemes employed
in the phenomenological side. This sum rule contains very
small contribution from the transition N → N∗, and the
result is insensitive to the continuum threshold. There-
fore, this structure provides a value of gπN independent of
the coupling schemes. However, the result from this Dirac
structure, gπN ∼ 10, is not quite satisfactory. Certainly
a further improvement of this sum rule may be needed
for future extension to other meson-baryon couplings in
SU(3) sector.

Various improvements can be sought for. These may
include a question related to the use of Ioffe’s nucleon
current for the correlator, higher order corrections in the
OPE, or corrections associated with the chiral limit. The
last possibility for the improvement is interesting because
gπN from the γ5σµν sum rule is rather close to the one in
the chiral limit than its empirical value. In [4], the calcula-
tion is performed beyond the soft-pion limit by taking the
leading order of the pion momentum pµ, but for the rest
of the correlator the chiral limit, p2 = m2

π = 0, is taken.
Thus, it is not clear whether the calculation is done be-
yond the chiral limit and this may cause the discrepancy
with the empirical gπN .

In this paper, we pursue an improvement by present-
ing a QCD sum rule calculation beyond the chiral limit.
Specifically, we consider the Dirac structure, iγ5, at the
order, p2 = m2

π. The sum rule for the structure iγ5 is
technically less involved when the calculation is done be-
yond the chiral limit. The OPE side, mainly driven by
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the zeroth and second moments of the twist-3 pion wave
function, is relatively well-determined as we will see.

However, since we put the pion on its mass-shell p2 =
m2
π in this sum rule, one nucleon interacting with the pion

will be off the mass-shell, which brings an issue regarding
the PS and PV coupling schemes in this iγ5 sum rule. To
illustrate the coupling scheme dependence in detail, we
use the PS and PV Lagrangians

Lps = gπN ψ̄iγ5τ · πψ ; Lpv =
gπN
2m

ψ̄γ5γµτ · ∂µπψ , (2)

in constructing the phenomenological side of the cor-
relator, (1). The two descriptions are equivalent when
the nucleons are on their mass-shells. We construct the
phenomenological side by inserting the interaction La-
grangians into the correlator and replacing the nucleon
interpolating field with its physical one JN → λψ. We
collect only the part containing the Dirac structure iγ5

and expand it with respect to the pion momentum pµ.
Using the PS Lagrangian, we obtain for the iγ5 structure
[5],

gπNλ
2

[
− 1
q2−m2

− p · q
(q2−m2)2

+
p2

(q2−m2)2

]
+ · · · . (3)

Here λ is strength of JN to the physical nucleon, m is
nucleon mass.

The first term in the expansion survives in the soft-
pion limit. The sum rule for this monopole term is
equivalent to the nucleon chiral odd sum rule under the
Goldberger-Treiman relation with gA = 1 [3]. The second
term containing p · q is not the same chiral order as m2

π.
Furthermore, since the two momenta pµ and qµ are inde-
pendent, this p · q term should be independent from the
third term involving p2. Thus in the sum rule at the or-
der p2 = m2

π (meaning the pion is on its mass shell), the
phenomenological correlator takes the form,

m2
π

gπNλ
2

(q2 −m2)2
+ · · · . (4)

The ellipses now indicate the contribution when JN cou-
ples to higher resonances. This includes the continuum
contribution whose spectral density is usually parameter-
ized by a step function with a certain threshold Sπ, and
single pole terms associated with the transitions, N → N∗

[7].
On the other hand, using the PV Lagrangian, the sim-

ilar recipe yields,

p2

2
gπNλ

2

(q2 −m2)2
+ · · · . (5)

This PV correlator contains an additional residue of 1/2
compared to the p2 term in the PS correlator (3). Note
that the p2 term is the first term in this expansion and
there is no monopole like the first term in (3). Hence, in
the soft-pion limit, this PV correlator vanishes.

Anyway, this factor of 1/2 is seemingly strange at the
first sight. But we know that this double pole term should

be equivalent to the PS case when the participating nu-
cleons are put on their mass-shells. By putting the nucle-
ons on mass-shells, we immediately obtain the condition,
p2 = 2p · q. Under this mass-shell condition, the last two
terms in (3) are combined and produce the PV correla-
tor (5) as they should be. Therefore the strange factor of
1/2 is needed to achieve the equivalence between the PS
and PV coupling schemes when the nucleons are on-shell.
However, the on-shell condition for both nucleons is not
kinematically allowed when we put the pion on its mass-
shell p2 = m2

π. The three particles cannot be on-shells at
the same time. This means that, when the pion is on the
mass shell as we study in this work, one nucleon should
be off the mass-shell. Therefore, we can not have the con-
dition p2 = 2p · q and the last two terms in (3) should not
be combined. In other words, they should be treated sep-
arately. From this consideration, the PV correlator differs
by the factor of 2 at the p2 = m2

π order. As the QCD side
does not care which coupling scheme is used in the phe-
nomenological side, the coupling constant obtained from
the PV scheme will be doubled.

Then a question remains as to which coupling scheme
to be used in the construction of the phenomenological
side at the p2 = m2

π order. Our choice in this work is the
PS coupling scheme. To motivate this choice, we consider
(1) in the soft-pion limit. For a simple illustration, we
replace JN → λψ. Using the soft-pion theorem, we replace
the correlator (1) by a commutator between the nucleon
correlator without a pion and the nucleon axial charge.
Then it is straightforward to show [8]

iλ2

∫
d4xeiq·x〈0|T [ψ(x)ψ̄(0)]|π(pµ = 0)〉

=
λ2

2fπ
{γ5, i

∫
d4xeiq·x〈0|T [ψ(x)ψ̄(0)]|0〉} . (6)

A similar relation is hold in terms of quark degrees of
freedom. Thus this relation is supported by the OPE side.
Note, the anticommutator in the RHS contains the nu-
cleon propagator. Hence, it is easy to see that the RHS
is

−λ
2

fπ

m

q2 −m2
. (7)

By comparing with the PS correlator (3) in the soft-pion
limit, one can immediately see

gπN =
m

fπ
, (8)

which is nothing else but the Goldberger-Treiman rela-
tion with gA = 1. More importantly, the RHS of (6) does
not vanish in the soft-pion limit. However, this simple fact
cannot be recovered from the PV Lagrangian as the PV
correlator (5) becomes zero in the soft-pion limit. Thus,
the PV coupling scheme seems to have an unpleasant fea-
ture. Furthermore, the OPE side for the correlator (1) in
its expansion in pµ can be shown to have similar expan-
sion as the PS correlator (3). Therefore, we will use the
PS correlator in constructing the phenomenological side.
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In future, however, it will be necessary to understand why
the PV coupling scheme is not consistent with the OPE.

In the construction of this sum rule, the pion mass,
m2
π, will be kept in both sides of the sum rule. Then, a

consistent treatment should be made in the OPE side.
Namely, from the Gell-Mann−Oakes−Renner relation,

−2mq〈q̄q〉 = m2
πf

2
π , (9)

the vanishing limit of the pion mass, m2
π → 0, is consistent

with the chiral limit, mq → 0. For the sum rule with at the
m2
π order, terms linear in quark mass should be kept in the

OPE side as they are in the same chiral order. Clearly, this
aspect has been overlooked in our previous calculations [5]
and needs to be implemented.

To construct the OPE side, we consider the correlation
function with a charged pion,

Π(q, p) = i

∫
d4xeiq·x〈0|T [Jp(x)J̄n(0)]|π+(p)〉 . (10)

Here Jp is the proton interpolating field suggested by Ioffe
[7],

Jp = εabc[uTaCγµub]γ5γ
µdc , (11)

and the neutron interpolating field Jn is obtained by re-
placing (u, d) → (d, u). In the OPE, we keep the quark-
antiquark component of the pion wave function and use
the vacuum saturation hypothesis to factor out higher di-
mensional operators in terms of the pion wave function
and the vacuum expectation values.

For the sum rule with the iγ5 structure, we replace the
quark-antiquark component of the pion wave function as
follows,

〈0|uαa (x)d̄βa′(0)|π+(p)〉

→ δaa′

12
(iγ5)αβ〈0|d̄(0)iγ5u(x)|π+(p)〉 . (12)

Other Dirac structures, γ5γµ and γ5σµν , do not contribute
to the iγ5 sum rule at the order p2 = m2

π. The matrix
element in the left-hand side can be written in terms of
the twist-3 pion wave function [9],

〈0|d̄(0)iγ5u(x)|π+(p)〉

= −
√

2〈q̄q〉
fπ

∫ 1

0

due−iup·xϕp(u) . (13)

The second moment of the twist-3 wave function, which is
approximately fixed

∫ 1

0
du u2ϕp(u) = 1/3 [9], contributes

to the sum rule at the m2
π order. The error for this second

moment is very small [9].
Another contribution at this order is obtained by mov-

ing a gluon tensor from a quark propagator into the quark-
antiquark component. The resulting quark-antiquark com-
ponent with a gluon tensor can be written in terms the
three-particle wave function. Namely, we can write

〈0|gsGAµν(0)uαa (x)d̄βb (0)|π+(p)〉 = BtAab(γ5σµν)αβ . (14)

The color matrices tA are related to the Gell-Mann ma-
trices via tA = λA/2. This matrix element should be zero
in the soft-pion limit (consistent with the chiral limit).
This can be seen easily by using the soft-pion theorem.
Multiplying both sides with (γ5σ

µν)βαtAba leads to

B = − 1
192
〈0|d̄(0)gsGµν(0)γ5σ

µνu(x)|π+(p)〉 , (15)

with Gµν ≡ tAGAµν . This matrix element can be directly
obtained from [9] [see (36) there]. That is, B at p2 = m2

π

order is

B → −if3π

32
m2
π , (16)

where 1 f3π = 0.003 GeV2.
As we have discussed, terms linear in quark mass

should be kept in the OPE for the sum rule at m2
π or-

der. The quark-mass dependent terms can be obtained
by taking the zeroth moment of the twist-3 pion wave
function (13), while picking up linear terms in quark-mass
from the other part of the correlator 2. It turns out that
the condensates, mq〈q̄q〉 and mq〈q̄gsσ · Gq〉 ≡ mqm

2
0〈q̄q〉,

contribute to the OPE of the iγ5 structure. The Gell-
Mann−Oakes−Renner relation can be used to convert
mq〈q̄q〉 to−m2

πf
2
π/2. Therefore, the quark-mass terms give

additional contributions to the sum rule at the m2
π order.

Collecting all the OPE terms contributing to the iγ5

structure at the m2
π order, the OPE side (after taking out

the isospin factor
√

2 as well as m2
π as overall factors) takes

the form

ln(−q2)
[ 〈q̄q〉

12π2fπ
+

3f3π

4
√

2π2

]
+ fπ〈q̄q〉

1
q2

+
1

72fπ
〈q̄q〉

〈αs
π
G2
〉 1
q4
− 1

3
m2

0fπ〈q̄q〉
1
q4

(17)

Note, we use the pion decay constant fπ = 0.093 GeV
here. The second and fourth terms come from the quark-
mass dependent terms. These are important in stabilizing
the sum rule. The second term in the bracket comes from
gluonic contribution combined with the quark-antiquark
component, (14). Its contribution is about 4 times smaller
than the first term in the bracket. Except for this term, all
others contain the quark condensate. This feature provides
very stable results when this sum rule combined with the
nucleon chiral-odd sum rule.

We now match the OPE with its pseudoscalar phe-
nomenological part, (4). To saturate the correlator with

1 Its value is uncertain by an error ±0.0005 GeV2 depending
on the renomalization scale [6]. However, the contribution from
(14) is small in our sum rule as we will discuss below. Thus,
this error in f3π is negligible in our sum rule.

2 For a complete quark propagator including the linear order
in quark mass, see [10]. Note that gluonic tensor used there
has opposite sign of that in [2]. This is just a matter of how
one defines the covariant derivative but, in practice, this sign
difference should be carefully noted.
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Fig. 1. The Borel mass dependence of gπNλ
2[1 + AM2]. The

solid line is for Sπ = 2.07 GeV2 and the dashed line is for
Sπ = 2.57 GeV2. The two curves differ only by 2% at M2 = 1
GeV2. The dot-dashed line is obtained simply by omitting the
quark-mass terms in the OPE, indicating the importance of
their inclusion in our sum rule

the low-lying resonance, we take the Borel transformation
and obtain,

gπNλ
2e−m

2/M2
[1 +AM2] =

−M4E0(xπ)
[ 〈q̄q〉

12π2fπ
+

3f3π

4
√

2π2

]
− fπ〈q̄q〉M2

+
1

72fπ
〈q̄q〉

〈αs
π
G2
〉
− 1

3
m2

0fπ〈q̄q〉 . (18)

The contribution from N → N∗ [7] is denoted by the
unknown constant, A. The continuum contribution is in-
cluded in the factor, En(xπ ≡ Sπ/M

2) = 1 − (1 + xπ +
· · · + xnπ/n!)e−xπ where Sπ is the continuum threshold,
taken to be 2.07 GeV2 corresponding to the Roper res-
onance. In our analysis, we take standard values for the
QCD parameters,

〈q̄q〉 = −(0.23 GeV)3 ;〈αs
π
G2
〉

= (0.33 GeV)4 ;

m2
0 = 0.8 GeV2 . (19)

The OPE structure of our sum rule (18) looks similar
to the γ5σµν sum rule [4]. Contributions from the terms
containing f3π and the gluon condensate are not so large
in this sum rule. All others, which are important in our
sum rule, add up as they have the same sign. However, in
the γ5σµν sum rule [4], the term containing m2

0 has the
opposite sign from the other important terms. The OPE
strength of (18) is larger than the one in [4], reducing the
role of the m2

0 term in this sum rule. Therefore, the error
due to m2

0 will be reduced as we will see.
In Fig. 1, we plot gπNλ2[1 + AM2] as a function of

the Borel mass M2. Also shown in the dot-dashed line is
when the quark-mass terms are omitted from the OPE.

It clearly shows the importance of the quark-mass depen-
dent terms, justifying their inclusion in our sum rule. To
see the sensitivity to the continuum threshold, we also plot
the curve with Sπ = 2.57 GeV2, which yields the dashed
line very close to the solid one plotted with Sπ = 2.07
GeV2. The two curves differ only by 2% at M2 = 1 GeV2,
indicating that our sum rule is insensitive to the contin-
uum threshold. The highest dimensional term in the OPE
contributes appreciably for M2 ≤ 0.6 GeV2, more than
20 % of the total OPE. Thus, the truncated OPE will be
reliable for M2 ≥ 0.6 GeV2. The slope of the curve for
M2 ≥ 0.6 GeV2 is small, indicating that the unknown
single pole term denoted by A is small.

To eliminate the dependence on the unknown strength
λ in our sum rule, we divide (18) by the nucleon chiral-odd
sum rule and obtain,

gπN
m

[1 +AM2] ={
M4E0(xπ)

[
1

3fπ
+

3f3π

〈q̄q〉
√

2

]
+ 4π2fπM

2

− π2

18fπ

〈αs
π
G2
〉

+
4π2

3
m2

0fπ

}
×
{
M4E1(xN )− π2

6

〈αs
π
G2
〉}−1

, (20)

where xN = SN/M
2 with SN being the continuum thresh-

old for the nucleon sum rule. Note that the dependence
on the quark condensate has been mostly canceled in the
ratio, leaving a slight dependence in the term f3π. Addi-
tional source of the uncertainty associated with the gluon
condensate is also very small as it is canceled in the ra-
tio. One important uncertainty comes from the parameter
m2

0, which however appears only in the highest dimen-
sional OPE. Thus, its contribution will be suppressed in
the Borel window chosen. The error from the QCD pa-
rameters is estimated numerically and it is about ±1.2 in
determining gπN . For the continuum threshold in the nu-
cleon sum rule, we take SN = Sπ. This choice is made
because at the chiral limit the iγ5 sum rule is equiva-
lent to the nucleon chiral-odd sum rule; these two are re-
lated by a chiral rotation. This equivalence provides the
Goldberger-Treiman relation with gA = 1 [3]. This choice
for the continuum is also supported from modeling higher
resonance contributions to the correlator based on effec-
tive models [5]. We determine gπN and A by fitting the
RHS with a straight line within the appropriately cho-
sen Borel window. The dependence on the Borel mass is
mainly driven by the nucleon sum rule. The maximum
Borel mass is determined by restricting the the contin-
uum contribution from the nucleon sum rule while the
minimum Borel mass is obtained by restricting the high-
est OPE term from the πNN sum rule. These gives the
common window of the two sum rules, 0.65 ≤M2 ≤ 1.24.
By fitting the RHS with a straight line within this win-
dow, we obtain gπN = 13.3± 1.2, where the quoted error
comes from the QCD parameters. This is remarkably close
to its empirical value of 13.4.

In getting this result, we emphasize that it is essen-
tial to go beyond the chiral limit. The quark-mass terms,
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included as a consistent chiral counting, are important in
stabilizing the sum rule and producing the empirical gπN .
This may provide a solid ground for extending to other
meson-baryon couplings. The predictive power of QCD
sum rules can be substantially enhanced. One application
of our sum rule to the ηNN is in progress [11].

In summary, we have developed a QCD sum rule for
πNN coupling beyond the chiral limit for the first time.
The iγ5 Dirac structure at the order p2 = m2

π is considered
in this sum rule. In the phenomenological side, we have
used the pseudoscalar coupling scheme as it seems consis-
tent with the OPE in the soft-pion limit as well as beyond
the soft-pion limit. The quark-mass dependent terms are
combined into the sum rule as they are the same chiral
order as m2

π. They are very important in this sum rule.
A remarkable agreement with the empirical value of gπN
was obtained with very small errors.

The author is indebted to T. Hatsuda who has drawn the at-
tention to this problem. The author also thanks M. Oka, and
S. H. Lee for useful discussions. This work is supported by Re-
search Fellowships of the Japan Society for the Promotion of
Science.
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